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Abstract. Incoherent co-tunnelling in metallic ultrasmall-tunnel-junction systems is studied
at high temperature,kBT & EC, in a constant-lifetime approach involving intermediate virtual
states. For the double junction the resulting conductance increases linearly with the temperature.
For the serial array a sharp drop off of the conductance with the number of junctions in the
array is found.

1. Introduction

The classical temperature range of single-electron tunnelling (SET) iskBT � EC whereEC

is the Coulomb energy. However, one of the earliest SET applications, the thermometer [1],
is operated at much higher temperature,kBT & EC, which is also the temperature domain
of this study.

SET thermometry takes advantage of the temperature dependence of the Coulomb
blockade in ultrasmall-tunnel-junction systems by measuring their conductance. Therefore
this kind of thermometer measures the temperature of the electron system, not the
temperature of the lattice. In the mK region these values might differ from each other due
to the heating of the tunnelling charges themselves (the hot-electron effect [2]). Therefore
it turns out to be advantageous to operate a SET thermometer at low bias voltage, i.e. to
determine the temperature from the zero-bias conductanceG(V = 0, T ). The junction
systems used or proposed for SET thermometry so far are serial arrays of at least two
junctions.

Incoherent co-tunnelling is the enhancement of the tunnelling current due to tunnelling
events via virtual intermediate charge states, thus resulting in a distortion of the thermometer
operation. It was studied first theoretically in reference [3], and this study was followed by
numerous theoretical calculations [4–6] and experiments [7–9], to mention but a few early
works on this subject. The vast majority of the papers on this topic, however, deal with
co-tunnelling at low temperature, i.e. in the classical temperature range of SET. To the best
of our knowledge only one paper [10] explicitly addresses the temperature range considered
here, but with different conclusions. These differences will be discussed later on.

In the low-temperature range the zero-bias conductanceGin(V = 0, T ) due to incoherent
co-tunnelling is found to obey

Gin(V = 0, T ) = π

3

h̄/e2

R2

(
βEC

2

)−2

(1)
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for a symmetric double junction [4].EC, the Coulomb energy, is in this casee2/(4C),
andβ = 1/(kBT ) is used for brevity. For the serial array each additional junction adds a
factor (βEC)−2 [11]. In contrast, for very high temperature, ohmic behaviour of all of the
junctions under consideration is expected [5], since thermal fluctuations will conceal the
charging effect. With regard to SET thermometry, however, co-tunnelling is still of interest
since it is a limiting factor for the thermometer’s resolution.

Owing to singular matrix elements, the formal evaluation of incoherent co-tunnelling
is not straightforward. Different procedures for overcoming this problem have been
introduced in the past, namely ‘leading-log’ regularization [5, 12], Green’s functions
techniques [13, 14], and the simple finite-lifetime approach [15, 16]. Since the concern
of this paper is a first-order estimation, the latter method is used, but the discussion will
include consideration of the other procedures.

For the system under consideration, we assume the weak-tunnelling regime, i.e.Ri �
h̄/e2, to be appropriate. Therefore quantum fluctuations are suppressed by high tunnel
resistancesRi , and second-order perturbation theory [4] can be used. Furthermore, coherent
co-tunnelling is not considered in our study, since it can effectively be controlled by the
system layout. This is also the case for higher-order tunnel processes [14], because of their
small influence.

Incoherent co-tunnelling in ultrasmall double junctions is considered in section 2,
whereas section 3 concerns the longer 1D array.

eV

Figure 1. Incoherent co-tunnelling through a double junction. Two different charges are
involved in two tunnel events leaving an electron–hole excitation behind on the island between
the junctions.

2. Co-tunnelling in double junctions

The process of incoherent co-tunnelling through a double junction is shown schematically
in figure 1. Two different (incoherent) charges are involved in two tunnel events, one at
each junction.

The tunnel rateγ (V ) of this process follows from second-order perturbation
expansion [4]:

γ (V ) = h̄

2πe4R1R2

∫
dε1 dε2 dε3 dε4 f (ε1)f (−ε2)f (ε3)f (−ε4)M

?M
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× δ(eV + ε1 − ε2 + ε3 − ε4) (2)

where the energy-dependent part of the matrix element,M, is given by

M = 1

ε2 − ε1 + E1(V )
+ 1

ε4 − ε3 + E2(V )
(3)

andf (ε) denotes the Fermi function. Here the energiesE1,2 describe the energies necessary
to transfer a charge across the respective junctions. They depend on the applied bias voltage
V , the numbern of excess charges on the island, and the influence of a gate possibly coupled
to the island. The influence of the gate is not considered here. The applied voltageV itself
is thought to be small (e V � EC). Hence, there is no excess charge on the island (n = 0;
the influence of the temperature on the excess charge distribution of the island is dealt with
in the appendix). The energiesE1,2 are then [4]

E1(V ) = EC

(
1 − 2V C2

e

)
E2(V ) = EC

(
1 − 2V C1

e

) (4)

where EC = e2/(2C1 + 2C2) is the Coulomb energy of the system andC1,2 are the
capacitances of the respective junctions. In the small-bias region considered,E1,2(V ) > 0.

Whereas atT = 0 the quadratic singularities of (2) are outside the integration range
for voltages below the blockade threshold, a regularization of these singularities is required
at T > 0. This is done by introducing a small energy0 < E1,2 into the matrix element
M [15]:

M = 1

ε2 − ε1 + E1 + i0
+ 1

ε4 − ε3 + E2 + i0
resulting in

M?M = 1

(ε2 − ε1 + E1)2 + 02
+ 1

(ε4 − ε3 + E2)2 + 02

+ 2[(ε2 − ε1 + E1)(ε4 − ε3 + E2) + 02]

[(ε2 − ε1 + E1)2 + 02][(ε4 − ε3 + E2)2 + 02]
. (5)

This approximation make sense in the case where0 < EC, when the finite lifetime of the
intermediate charge states is still large on the time-scale of ¯h/EC. Otherwise, more difficult
regularization procedures [5, 13] are necessarily required.

Additional simplification is achieved by neglecting the third term in (5). As0 � E1,2

holds, this term will not result in a significant contribution to the rateγ or the conductance
Gin. Furthermore, the evaluation of the integrals in (2) is simplified by the peaked,
temperature-independent matrix elements in comparison to the smooth Fermi functions in
the temperature range considered: the latter is assumed to be constant with regard to the
integration, using the peak value of the former in its argument.

Otherwise, the evaluation of the integrals is straightforward, and we find for the zero-bias
conductance

Gin(V = 0, T ) = 2eγ ′(V = 0) = h̄/e2

R1R2

EC

20

βEC/2

sinh2(βEC/2)
. (6)

This is our main result and covers temperatureskBT � 0. Hence, if 0 � EC holds,
equation (6) is valid for temperatureskBT 6 EC as well.

Equation (6) is independent of an asymmetry in the junction parameters as long asR1R2

and C1 + C2 are conserved, which coincides with the low-temperature result [4]. On the
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other hand, the low-temperature approximation yieldsGin(V = 0, T ) ∝ T 2, whereas (6)
gives an exponential drop off in this limit.

The behaviour of (6) depends strongly on the value of0, which is proportional to
the inverse lifetime of a virtual state on the island. It is affected by different processes
like other tunnelling processes (of first or higher than second order) or electron–electron
scattering. The relevant process is not easy to spot. We derive a rough estimation of0

from the following argument: since the energy scale of the problem is the Coulomb energy
EC, the crossover from low to high temperature takes place in the vicinity ofβEC = 1. A
comparison of formulae (1) and (6) yields

0 ≈ 3EC

4π
< EC. (7)

0 is taken to be temperature independent, assuming a variation of it on an energy scale other
than EC. Since the following discussion of its value reveals a certain variety of the data
in literature (within one order of magnitude), this crude assumption appears to be adequate
for our approach. In reference [5] the peak conductance is found to be

Gin
GM = 2πe2

h̄

R1R2

(R1 + R2)2
.

In comparison to our result forGin(V = e/(C1 + C2)) in the limit of low temperature,
h̄EC/(2e2R1R20), we see that our value (7) is for a typical set-up of the right order
of magnitude, but quite large. A similar result is found in reference [13],0LE =
h̄EC/(2e2R1,2), whereas a comparison with reference [15] yields reasonable correspondence,
0KH = 4π2h̄EC/(e2R1,2). With regard to the experiment we conclude a conductance
Gin

EZ ≈ 0.06 µS from reference [9]. In order to fit this value,0 should be larger than
the value of (7).
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Figure 2. The dependence of the zero-bias conductance of a symmetric double junction
(C = 0.1 fF, R = 1 M�) on the temperature. The solid line shows the full result. For
the dashed curve, co-tunnelling is neglected.

In figure 2 the impact of (6) on the overall conductance of a double junction is shown
with 0 corresponding to (7). At high temperature (compared toEC/kB) the conductance is
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found to increase linearly:

Gin(V = 0, T )
β→0−→ h̄/e2

R1R2

kBT

0
. (8)

Owing to the value of0 this conductance is usually below the ohmic first-order conductance
1/(R1 + R2). At very high temperature (several timesEC/kB), however, it will equal the
first-order conductance, and the applied perturbation expansion fails. In fact, a transition to
ohmic conductance is expected in this situation [5].

In experiment, incoherent co-tunnelling has only been observed at low bias voltage and
at low temperature so far, where the first-order current is suppressed [7–9]. At higher
temperature, measurements have to separate the small co-tunnelling contribution from
the dominating first-order current, which in turn complicates the experiment. Therefore,
verification of (6) in experiment is difficult to achieve.
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Figure 3. The dependence of the zero-bias conductanceGin(V = 0, T ) of a double junction
on the temperature. The symbols (�) display the experimental data of reference [9]. Dashed
and full lines represent the corresponding low- (1) and high- (6) temperature approximations,
respectively. The inset shows both formulae on a larger scale.

The temperature dependence of the zero-bias conductance in the low-temperature
domain was measured in [9]. In figure 3 the data from this measurement are compared
with the low-temperature approximation (1) and the high-temperature formula (6). Even
if the latter gives a smaller slope on a large scale, it dominates the former within an
intermediate-temperature domain. While far from being conclusive, the experimental data
suggest an additional conductance contribution in this range, thus supporting the approach
presented.

In contrast, in reference [10] singular matrix elements (without regularization) lead to
a significant conductance via incoherent co-tunnelling at high temperature. This behaviour
was not found in experiment so far. Additionally, we share the point of view of papers
on co-tunnelling at low temperature [5, 12–15] that these singularities are artefacts of the
perturbation theory applied.
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3. Co-tunnelling in junction arrays

The investigation of incoherent co-tunnelling in the case of serial arrays of ultrasmall tunnel
junctions is interesting at high temperature as well. While at low temperature the suppression
of co-tunnelling by means of the array was shown to follow [11](

RQ

R

(eV )2 + (kBT )2

(2πEC)2

)N

where N is the number of junctions in the array, it remains unclear whether a similar
expression holds for high temperature. In order to clarify the behaviour of co-tunnelling,
the consideration of an array of identical junctions is expected to be sufficient. Then, the
second-order tunnelling matrix element is [11]

MN =
N∑

j=1

( N∏
i=1
i 6=j

1

ε2i − ε2i−1 + Ei(j)

)
.

Like in the case of the double junction, one has to regularize the quadratic singularities of
these matrix elements for non-vanishing temperatures:

γN(V ) ∝
∫

dε1 dε2 dε3 · · · dε2N f (ε1)f (−ε2)f (ε3) · · · f (−ε2N)

× δ(eV + ε1 − ε2 + ε3 − + · · · − ε2N)

( N∑
i=1

[(ε2i − ε2i−1 + Ei)
2 + 02]

)

×
( N∏

i=1

[(ε2i − ε2i−1 + Ei)
2 + 02]

)−1

. (9)
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Figure 4. The dependence of the zero-bias conductanceGin
N(V = 0) of a 1D array of identical

junctions (C = 0.2 fF, R = 30 k�) on the numberN of junctions in the array forT = 1 K (�)
andT = 5 K (•).

Now, the evaluation follows exactly the pattern of the double junction and, generalizing
equation (8),

Gin
N(V = 0, T )

β→0−→ N

R

(
h̄/e2

2Rβ0

)N−1

(10)
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is found to be the high-temperature approximation. For the double junction the known
result is recovered. Within the range of validity, equation (10), as shown in figure 4,
reveals a drastic suppression with increasing number of junctions in the array. For largeN

an almost exponential drop off of the conductance is expected. Hence, the suppression of
co-tunnelling by means of longer serial arrays of ultrasmall tunnel junctions works well at
high temperature also.

The dependence of the conductance (10) on the length of an array of ultrasmall tunnel
junctions is—due to the rapid drop off—difficult to measure in experiment. However, in [7]
data for arrays of two and three junctions are given. At the temperature of the experiment
(T 6 50 mK) the conductance ratioG2/G3 is about 200. In terms of (10) our formula
yields G2/G3 ≈ 60. Since the temperature of the experiments differs from the domain
considered here, the rough correspondence in order of magnitude is satisfactory.

4. Conclusion

In conclusion, our approach yields a description of incoherent co-tunnelling at small bias
voltages but high temperatures on the scale of the Coulomb energy. The perturbation
expansion that this approach is based on yields singularities of the matrix elements used.
Their regularization is achieved using a finite lifetime of the intermediate virtual states. This
lifetime is taken to be constant over the temperature range considered. For sufficiently large
junction resistances (in comparison to ¯h/e2) the conductance contribution of incoherent co-
tunnelling turns out to be small. At very high temperature,T � EC/kB, a crossover to
ohmic behaviour is expected which is not described by our approach.
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Appendix

For an arbitrary numbern of excess island charges the energies (4) generalize to

E1(n, V ) = EC

(
1 + 2n − 2V C2

e

)
E2(n, V ) = EC

(
1 − 2n − 2V C1

e

)
resulting in a current contributionI (n, V, T ) similar to the integral evaluated above in the
case wheren = 0 (section 2). Now the total current that has to be considered for further
analysis is

I in(V , T ) =
∑

n

I in(n, V, T ) σ (n, V, T )

where σ(n, V, T ) is the temperature-dependent occupation probability ofn charges. At
voltagese V � kBT this probability becomes independent of the bias voltageV [17]:

σ(n, T ) =
√

βEC

π
exp(−n2βEC). (A1)
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Hence, the zero-bias conductance simplifies to

Gin(V = 0, T ) =
∑

n

Gin(n, 0, T )σ (n, T )

usingGin(n, V, T ) = ∂I in(n, V, T )/∂V . The general expression forGin(n, 0, T ) is rather
awkward, so we restrict ourselves to the case of high temperature once more. In this limit
one finds

Gin(n, 0, T )
β→0−→ h̄/e2

R1R2

kBT

0

[
1 − (βEC)2

12
(1 + 4n2)

]
.

For |n| � 3/(βEC) this result is almost independent ofn. According to (A1) it becomes
obvious that this range includes all significantly occupied charge states. Hence, the
approximation

Gin(V = 0, T ) =
∑

n

Gin(n, 0, T )σ (n, V ) ≈ Gin(0, 0, T )
∑

n

σ (n) = Gin(0, 0, T )

is useful.

Note added in proof. A qualitative discussion of co-tunnelling in complex circuits at high temperature provided
by a recent paper [18] leads to conclusions similar to ours.
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